Search results for "complex geometrical optics"

showing 5 items of 5 documents

The Calderon problem in transversally anisotropic geometries

2016

We consider the anisotropic Calderon problem of recovering a conductivity matrix or a Riemannian metric from electrical boundary measurements in three and higher dimensions. In the earlier work \cite{DKSaU}, it was shown that a metric in a fixed conformal class is uniquely determined by boundary measurements under two conditions: (1) the metric is conformally transversally anisotropic (CTA), and (2) the transversal manifold is simple. In this paper we will consider geometries satisfying (1) but not (2). The first main result states that the boundary measurements uniquely determine a mixed Fourier transform / attenuated geodesic ray transform (or integral against a more general semiclassical…

Mathematics - Differential GeometryGeodesicGeneral MathematicsBoundary (topology)Conformal map01 natural sciencessymbols.namesakeMathematics - Analysis of PDEsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsMathematicsCalderón problemRiemannian manifoldApplied Mathematicsta111010102 general mathematicsMathematical analysiscomplex geometrical optics solutionInverse problemRiemannian manifold010101 applied mathematicsboundary control methodFourier transformDifferential Geometry (math.DG)Transversal (combinatorics)Metric (mathematics)symbolsinverse boundary value problemAnalysis of PDEs (math.AP)
researchProduct

On the scientific work of Victor Isakov

2022

singular solutionsosittaisdifferentiaaliyhtälötincreasing stabilityCalderón probleminverse problemscomplex geometrical opticspartial datanonlinear PDEinversio-ongelmat
researchProduct

Strictly convex corners scatter

2017

We prove the absence of non-scattering energies for potentials in the plane having a corner of angle smaller than $\pi$. This extends the earlier result of Bl{\aa}sten, P\"aiv\"arinta and Sylvester who considered rectangular corners. In three dimensions, we prove a similar result for any potential with a circular conic corner whose opening angle is outside a countable subset of $(0,\pi)$.

Plane (geometry)non-scattering energiesGeneral Mathematicsta111010102 general mathematicsMathematical analysis01 natural sciencescomplex geometrical optics solutions010101 applied mathematicsMathematics - Analysis of PDEscorner scatteringConic sectionFOS: MathematicsCountable set0101 mathematicsConvex functionMathematicsAnalysis of PDEs (math.AP)
researchProduct

On some partial data Calderón type problems with mixed boundary conditions

2021

In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal Calderón type problems. We prove two main results on these type of problems: On the one hand, we derive simultaneous bulk and boundary Runge approximation results. Building on these, we deduce uniqueness for localized bulk and boundary potentials. On the other hand, we construct a family of CGO solutions associated with the corresponding equations. These allow us to deduce uniqueness results for arbitrary bounded, not necessarily localized bulk and boundary potentials. T…

osittaisdifferentiaaliyhtälötinverse problemsApplied Mathematics(fractional) Calderón problem010102 general mathematicsDegenerate energy levelsMathematical analysisBoundary (topology)Duality (optimization)Type (model theory)partial dataCarleman estimates01 natural sciencesinversio-ongelmatrunge approximationcomplex geometrical optics solutions010101 applied mathematicsBounded functionBoundary value problemUniqueness0101 mathematicsapproksimointiAnalysisMathematicsestimointiJournal of Differential Equations
researchProduct

Determining an unbounded potential from Cauchy data in admissible geometries

2011

In [4 Dos Santos Ferreira , D. , Kenig , C.E. , Salo , M. , Uhlmann , G. ( 2009 ). Limiting Carleman weights and anisotropic inverse problems . Invent. Math. 178 : 119 – 171 . [Crossref], [Web of Science ®], [Google Scholar] ] anisotropic inverse problems were considered in certain admissible geometries, that is, on compact Riemannian manifolds with boundary which are conformally embedded in a product of the Euclidean line and a simple manifold. In particular, it was proved that a bounded smooth potential in a Schrödinger equation was uniquely determined by the Dirichlet-to-Neumann map in dimensions n ≥ 3. In this article we extend this result to the case of unbounded potentials, namely tho…

Mathematics::Analysis of PDEsBoundary (topology)Calderón inverse problem01 natural sciencesMathematics - Analysis of PDEsSpectral clusterFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsAnisotropyMathematicsApplied Mathematics010102 general mathematicsMathematical analysista111Cauchy distributionInverse problemMathematics::Spectral TheoryAttenuated geodesic ray transformCarleman estimates010101 applied mathematicsProduct (mathematics)Mathematics::Differential GeometryComplex geometrical opticsAnalysisAnalysis of PDEs (math.AP)Communications in Partial Differential Equations
researchProduct